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Fetal glucocorticoid receptor (Nr3c1)
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dependent manner and is associated to
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Abstract
Prenatal stress defines long-term phenotypes through epigenetic programming of the offspring. These effects are
potentially mediated by glucocorticoid release and by sex. We hypothesized that the glucocorticoid receptor (Gr,
Nr3c1) fashions the DNA methylation profile of offspring. Consistent with this hypothesis, fetal Nr3c1 heterozygosity
leads to altered DNA methylation landscape in fetal placenta in a sex-specific manner. There was a significant overlap
of differentially methylated genes in fetal placenta and adult frontal cortex in Nr3c1 heterozygotes. Phenotypically,
Nr3c1 heterozygotes show significantly more anxiety-like behavior than wildtype. DNA methylation status of fetal
placental tissue is significantly correlated with anxiety-like behavior of the same animals in adulthood. Thus, placental
DNA methylation might predict behavioral phenotypes in adulthood. Our data supports the hypothesis that Nr3c1
influences DNA methylation at birth and that DNA methylation in placenta correlates with adult frontal cortex DNA
methylation and anxiety-like phenotypes.

Introduction
The glucocorticoid receptor (GR, NR3C1) plays a major

role in the development of stress-induced disorders1.
Prenatal stress exerts a strong impact on the HPA-axis of
rat offspring into adulthood (e.g., 2,3). The behavior of
affected animals is altered during the whole lifespan: pups
display increased ultrasonic vocalizations when stressed
prenatally4, adolescent rats show less social play5, and
adult animals show more anxiety- and depressive-like

behavior6. These results have been found in humans as
well7. Moreover, there is an abundance of studies showing
sex differences in stress-programming regarding beha-
vioral, physiological, endocrine, and epigenetic
modifications8.
As the stress response is mediated by glucocorticoids,

they are potentially a primary programming factor con-
veying maternal stress to the fetus via the placenta9. This
assumption is supported by the evidence that treatment
with synthetic glucocorticoids of pregnant rodents leads
to offspring with similar HPA-axis and behavioral changes
as prenatally stressed offspring10. Moreover, when
maternal adrenal glands are removed, prenatally stressed
offspring do not display the full phenotype of increased
stress responsivity11. There is a large variety of methods
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for applying prenatal stress in animal models (e.g., 9,12,13).
Loss of NR3C1 function in the nervous system disturbs
hypothalamus–pituitary–adrenal-axis regulation so that
glucocorticoid levels14 as well as stress responsivity are
elevated15,16. In this study, we use a heterozygous Nr3c1
knockout mouse to determine the role of the fetal Nr3c1
gene in defining DNA methylation patterns and future
behavior.
The glucocorticoid receptor has been demonstrated to

be a crucial target for epigenetic programming by early
postnatal experiences: differences in maternal care in the
rat stably alter the methylation state of the promotor
region of the glucocorticoid receptor in the hippocampus
of offspring17. Increased maternal licking/grooming
caused a lower stress responsivity of offspring compared
to the offspring of dams with low levels of licking/
grooming. Epigenetic pharmacological manipulation
reversed the effects of maternal care on DNA methylation
as well as behavior, supporting the idea that epigenetic
differences mediated the effect of maternal care on the
behavior of the offspring17,18. Since then, these findings
have been replicated in other species19,20 as well as in
humans21.
In addition, during fetal development, glucocorticoids

play a pivotal role in regulating the placenta that controls
fetal exposure to the maternal environment22. The pla-
centa expresses 11b-hydroxysteroid dehydrogenase type-2
(11b-HSD2), which protects the fetus from excessive
maternal glucocorticoids by metabolizing corticosterone
into inactive 11-dehydrocorticosterone23. However, a
significant reduction of this enzyme and its placental gene
expression after repeated stress exposure in pregnancy
has been observed24, so that it is not able to completely
shield the fetus from glucocorticoid overexposure caused
by the maternal stress reaction.
Crudo et al.25,26 reported global methylation changes in

placental tissue and organs of the fetus after maternal
betamethasone treatment in guinea-pigs. Global methy-
lation remained altered in adult tissues of the offspring.
Furthermore, the maternal betamethasone treatment also
modifies DNA methylation and histone H3 lysine 9
acetylation in the fetal hippocampus27 and leads to dif-
ferential Gr binding to a large number of different gene
promotors and methylation of specific GREs in the fetal
hippocampal Mr gene26.
We hypothesized that Nr3c1 plays an important role in

mediating the effects of stress on DNA methylation pat-
terns systemically during the development and that these
alterations mediate phenotypic effects of altered stress
and glucocorticoid levels. We also reasoned that these
methylation changes occur across several tissues and are
not exclusive to the brain. We focused on fetal placenta
since it is one of the few noninvasive sources of early life
biological material at birth beside blood28,29 and perhaps

one of the few biological sources that enable correlating
DNA methylation at birth and later phenotypes in the
same living animal.
As placental tissue is usually consumed by the mouse

dam soon after birth, it is impossible to collect it in a
natural setting. There are few studies linking character-
istics of placenta and behavior of offspring in adulthood
and they usually assign different litters to sample tissues
and the behavioral tests (e.g., 30,31).
We succeeded in establishing an elaborate procedure

of caesarian section32 that allowed the pups to develop
with minimal neurotoxic side effects and provided us
with placental tissue from the same individuals. Due to
an upbringing with foster dams, the animals developed
into adulthood and were tested for behavioral pheno-
types as adults. This allowed us to measure in the same
animal the baseline DNA methylation pattern in pla-
centa and behavioral phenotypes later in life. To our
knowledge, the present study is the first one linking
epigenetic features of fetal placental tissue directly to
the behavior of the same animals in adulthood. Our data
suggest broad and physiologically pertinent changes in
DNA methylation in placenta that correlate with
anxiety-like behavior in adulthood in response to Nr3c1
deficiency.

Methods
Full details of all methods can be found in the supple-

mentary file.
All procedures complied with the regulations covering

animal experimentation within the EU (European Com-
munities Council Directive 86/609/EEC) as well as
national and local authorities (Regierungspräsidium
Karlsruhe, Germany).

Animals and tissue collection
Acclimatized female Nr3c1+/+ and male Nr3c1+/− mice

were used for breeding. Nr3c1+/− animals were originally
generated as described by Tronche et al.14,33. Pregnant
females delivered by caesarean sections on E18.5 post
conception. The procedure was completed within
10–20 min (11.5 min in average) using xenon gas and
isoflurane anesthesia in order to protect the pups’ brain
and heart from hypoxia-induced damage32. The fetal
placental tissue was kept on dry ice and stored at −80 °C
immediately after dissection. After caesarean sections, the
biological dams were sacrificed and experienced C57BL/
6N foster dams whose own litter was aged between PND
(postnatal day) 1 and PND 4 were used to raise the pups.
The transfer into the nest of the lactating foster dam took
place within 15min after birth. The original pups were
mixed with litter and urine of the foster dam to pick up
her scent and so improving acceptance by the foster dam.
We pooled the samples of individual placentae for the
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genome-wide epigenetic analysis to 3 groups of placental
tissue per sex/genotype combination (Table S1).
Adult frontal cortex was collected from a different

cohort of male GR-i animals (according to ref. 34). These
animals expressed GR antisense mRNA and consequently
exhibited a decrease in GR-specific binding as well as GR
mRNA levels in the frontal cortex35. Eight samples of
frontal cortex were pooled and analyzed via ChIP-
bisulfite-Seq (for a more detailed description please see
supplementary methods).

Behavior
Behavioral tests (Novel Cage, Open Field, Forced Swim

Test, Hot Plate Test, Learned Helplessness and Dark
Light Box as described elsewhere10,36) were performed by
a completely blinded investigator. Maternal care was
monitored from PND2 to PND8 for 24 h a day and rated
via instantaneous sampling with a detailed ethogram
adapted by Coutellier et al.37. Maternal care did not sig-
nificantly differ between the dams (see Table S2 and Table
S3).

Statistics
All analyses of variance (ANOVA) were conducted

using the general linear model (GLM). Whenever the
assumptions of parametric analysis were not met by gra-
phical examination of homoscedasticity, raw data were
transformed according to the Box–Cox-method or an
outlier analysis was performed. All analyses of variance
were based on a 2 × 2 factorial design with factors “sex”
and “genotype”. Two-way univariate ANOVAs were per-
formed for weight of adrenals, spleens, birth weight,
length of the newborn, rearing of novel cage, hot plate,
sub-tests of dark–light-box, FST, learned helplessness,
and methylation validation with pyrosequencing. For
open field test and body weights over time, a two-way
repeated measurements ANOVA was conducted with the
factor “time”. Linear Pearson product-moment coefficient
was applied to determine correlations between DNA
methylation and behavioral measures. Spearman rho
coefficient was used for correlating number of failures and
escape latency in the learned helplessness paradigm.
Moderation effects were tested using Hayes Process
macro for SPSS38. A MANOVA with subsequent uni-
variate two-way ANOVAs and t-tests were performed for
the analysis of global methylation levels. For DNA
methylation analysis and annotation, the R package
“methylkit” was used39, correcting for multiple testing
using Benjamini–Hochberg false discovery rate (FDR). A
non-parametric χ2-test was calculated to detect differ-
ences between all 19 foster dams in maternal care beha-
vior. The hypergeometric test as well as the binomial test
was applied to test significant overlaps. Adjusted p-
value ≤ 0.05 was set as threshold for statistical significance

except for genome wide DNA methylation data which was
set at 0.2. Statistical analyses were performed using SPSS
21.0 software package for Windows.

Capture bisulfite sequencing and DNA methylation
mapping
SeqCap Epi Enrichment System (Roche-NimbleGen)

performed at the Institute de recherches cliniques de
Montréal was used for targeted bisulfite sequencing of
promoters and enhancers.

Analysis of differentially methylated cytosines
FastQC assessed sequencing scores and other quality

metrics. Methylation levels and coverage levels were
extracted with methratio.py command in Bsmap. Differ-
ential methylation cytosines were analyzed with methylKit
R package39 with FDR threshold of 0.2. Differentially
methylated positions were annotated with HOMER40.

Results
Effects of Nr3c1+/− deficiency on behavior
Nr3c1+/− mice display an increase in anxiety-like behavior as
measured by the dark–light box
Nr3c1 depletion significantly increased anxiety-like

behavior in all parameters monitored in the dark–light
box in both sexes (Fig. 1a–d). Nr3c1 animals spent less
time in the light compartment which is considered a
measure of anxiety-like behavior in rodents. Maternal
care, novel cage test, locomotor activity, depressive-like
behaviors such as forced swim test and learned help-
lessness, body weight, adrenal and spleen size were not
affected by Nr3c1 deficiency (please see supplementary
results).

Nr3c1 deficiency affects DNA methylation in a sex-dependent
manner
The genome wide state of methylation of promoters and

enhancers was mapped using capture bisulfite sequencing
(Fig. 2) and validated by pyro-sequencing (Fig. S1). In
contrast to wild type animals which exhibit a small
number of different methylation sites between sexes6 (see
Fig. 2a, d), 2433 differentially methylated CpG sites were
noted between males and females in Nr3c1 depleted
animals (Table S4).
There was a multivariate interaction effect of sex*-

genotype on global methylation of cytosines at CpG,
CHH, and CHG contexts (p= 0.013). Sex was significant
for CHH (p= 0.045, F3,8= 5.647) and almost reached
significance for CpG (p= 0.072, F3,8= 4.276). Stratified
for genotype, there was a statistical tendency for sex only
in Nr3c1+/− animals (p= 0.079, t4= 2.341) with males
showing higher global methylation levels (see Fig. 2b).
Hypermethylated sites were more abundant in male

Nr3c1 deficient animals (1023 in males vs 734 in females
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(p= 2.869E−12, binomial test), see Fig. 2c, d and Fig. S2)
while hypomethylated sites were more frequent in females
(901 in females vs 664 in males (p= 1.139E−09, binomial
test)). There was however a significant overlap between
sites that are hypermethylated (hypergeometric test p=
4.983E−11) or hypomethylated (hypergeometric test p=
2.435E−06) in both males and females. Each one of the
four groups clusters separately (see Fig. 2e).
Nr3c1+/− deficiency causes significant loss of methyla-

tion in 51 genes and gain of methylation in 73 genes in
both sexes (annotation: 15 reads, delta beta= 0.2, FDR <
0.2); 95 genes were hypermethylated in males and hypo-
methylated in females while 53 genes were hypomethy-
lated in males and hypermethylated in females (Table
S5–8).
Significant sex-dependent methylation in the opposite

direction at the same CG site (hypermethylation in males
and hypomethylation in females and vice versa) was
detected in 10 sites: Gm16853, Mir6998, Rgs22, Coro2b,
Babam1, Hoxd9, Gmppa, Slc14a2, Lhcgr, Cacnb1.
Seven CGs were differentially methylated in Nr3c1+/− in
the same direction in males and females: Paqr4,

4930487D11Rik, Rusc1, Fshr, 5033406O09Rik, Sumo2,
Mir7078 (see Table S9).

Effects of Nr3c1 heterozygosity and sex on methylation
state of candidate genes
We then examined methylation in a shortlist of genes

that were previously associated with early life stress and
psychiatric disorders as well as placental functioning:
Ank3, Avp, Avpr1a, Avpr1b, Bdnf, Cacna1c, Cyp11b1,
Cyp11b2, Fkbp5, Hsd11b1, Igf2, Morc1, Nr3c1, Oxt, Oxtr,
Pclo, Slc6a4.
There is no main or interaction effect of Nr3c1 genotype

on methylation of Nr3c1. For Igf2, there is a significant
main effect of sex on methylation (p < 0.001, F3,8=
25.378) with lower methylation in females. A significant
sex*genotype-interaction was found for Hsd11b1 (F3,8=
32.883, p < 0.001) and Cacna1c (F3,8= 5,689; p= 0.044)
but no main effect of either sex or genotype. However,
Nr3c1 deficiency significantly affected methylation of the
proximal GC regulator Fkbp5 which is significantly
hypomethylated in both male and female Nr3c1+/− mice
(F3,8= 10.537, p= 0.012) (see Table S10).

Fig. 1 Anxiety-like behavior measured by the dark–light-box. a Increased latency to enter the light department in Gr (Nr3c1)+/− animals (p=
0.011, F3,44= 7.047). b Increased latency to explore the end of the compartment in Gr (Nr3c1)+/− animals (p= 0.008, F3,44= 7.798). c Significant
decrease in the number of exits in Gr (Nr3c1)+/− animals (p= 0.013, F3,44= 6.646). d Decreased duration of time spent in the light area in Gr (Nr3c1)+/

− animals (p= 0.001, F3,44= 14.059). Means ± SEM
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Functional analysis of sex-dependent alteration of
methylation induced by Nr3c1 deficiency
We analyzed potential canonical pathways using inge-

nuity pathway analysis: a difference between males and
females in the level of enrichment of DNA methylation
alterations in Nr3c1 deficient mice was shown in central
nervous system-related functions like Reelin and CREB
signaling in neurons, whereas ubiquitous cell signaling
pathways like the Wnt/Ca+ pathway coupled receptor
were found to be similarly affected in both sexes (Fig. 3).
Beside cell signaling and developmental functions many

molecules regulating neuronal and metabolic processes
were associated with differentially methylated genes in
both sexes (see Table S11) and the top upstream regulator
was the central nervous system-specific gene Cannabi-
noid receptor 1 (CNR1) (see Table S12).
Five pathways directly related to central neuro-

transmission were enriched in genes that were hyper-
methylated in males and hypomethylated in females,
whereas the pathways enriched for genes that were
hypomethylated in males and hypermethylated in females
included mainly hormonal and general cell signaling
pathways. There are only two common canonical

pathways for the 95 genes hypermethylated in males and
at the same time hypomethylated in females and the 53
genes that were hypomethylated in males and hyper-
methylated in females: G-Protein Coupled Receptor Sig-
naling and Gαi signaling (see Fig. S3 and S4).

Overlap in differentially methylated promoters in Nr3c1-
deficient mice in fetal placenta and adult frontal cortex
We examined whether there is an overlap between the

genes differentially methylated in placenta of Nr3c1+/−

male fetuses (based on capture sequencing analysis of the
present study) and frontal cortex of adult male Gr-I mice
from a separate study (unpublished, based on a ChIP-
bisulfite-Seq-analysis of GR-bound DNA methylation).
242 genes were differentially hyper- and hypomethylated
in both tissues (17.5% of the genes that are differentially
methylated in male fetal Nr3c1+/− placentae) (p=
0.000388, hypergeometric test, FDR < 0.2; see Table S13).
Among others, specific neurotransmitter systems like

serotonin and glutamate receptor signaling as well as
neuronal developmental (e.g., netrin signaling) and neu-
roprotective (TNFR2-signaling) pathways were found
enriched (see Fig. 4).

Fig. 2 Sex-dependent effects of Nr3c1 deficiency. a Number of differentially methylated CpG sites for the comparisons of female vs male Nr3c1+/

+, female Nr3c1+/+ vs female Nr3c1+/−, male Nr3c1+/+ vs Nr3c1+/−, and female vs male Nr3c1+/− as depicted in the x-axis. Numbers directly above
the graph bars represent absolute numbers of differentially methylated CpG sites. b Global methylation of CpG, CHH, and CHG sites in wildtype and
Nr3c1 knockouts in both sexes. Numbers depicted directly on the graphs represent the percentage of CpG sites (see also y-axis to the left). The
percentage of CHH and CHG sites are illustrated on the right y-axis. c Effects of Nr3c1 loss on hyper- and hypomethylation in males and females. d
Genome-wide methylation tracks for CpG sites using Integrative Genomics Viewer (Broad Institute). Comparison is shown for female vs male
wildtype, female wild type vs female Nr3c1 heterozygous, male wild type vs male Nr3c1 heterozygous, and male vs female Nr3c1 heterozygous
animals. e DNA methylation landscape of Nr3c1 deficiency in male and female placental DNA. Heatmap (row distance metric: Pearson correlation,
average linkage) depicting the clustering of 6017 CpGs that were differentially methylated (q < 0.2) between placentae of Gr+/+ and Gr+/− fetuses of
both sexes. Rows correspond to CpGs and columns to animals’ genotype and sex. Here, group number 1–3 indicates three pooled samples of Gr+/+

males, number 4–6 stands for three pooled samples of Gr+/− males, 19–21 for three pooled samples of Gr+/+ females, and 22–24 for three pooled
samples of Gr+/− females. Red indicates higher methylation in a row and blue indicates lower methylation. See also Table S4-S9
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Brain functions as well as metabolic-related functions
were enriched in both tissues. Additionally, molecules
known to be involved in fundamental central nervous
functions (see Table S14), molecules involved in basal
metabolic processes and oxidative stress as well as a
considerable number of microRNA loci (see Table S15)
were enriched with differentially methylated genes in
placenta as well as frontal cortex. For both tissues, the
transcription factors Fos and Atn1 were found as
upstream regulators (see Table S16).

Correlation between differentially methylated genes and
anxiety-like behavior in Nr3c1 deficient mice
We correlated the quantitative levels of methylation of

CG sites of genes commonly differentially methylated in
both sexes (see Table S17) with quantitative behavioral
scores for each individual mouse. The behavioral score of
anxiety-like behavior of the adult males—but not females
—yielded 5 significant correlations with Slc1a7,
9530052E02Rik, Itgb7, Tiam2, and Tspo (see Fig. 5a–f,
adjusted p= 0.048).

The correlation of methylation levels with depression as
measured by the Forced Swim Test and Learned Helpless
Paradigm as well as locomotor activity (Novel Cage and
Open Field Test) did not lead to significant results con-
sistent with the lack of impact of Nr3c1 heterozygosity on
the latter behaviors (please see supplementary results).

Moderation of levels of anxiety-like behavior in adulthood
by differential DNA methylation in fetal placenta
Finally, we assessed the moderating influence of candi-

date genes whose level of methylation is associated with
the Nr3c1 genotype on anxiety-like behavior: Ank3, Avp,
Avpr1a, Avpr1b, Bdnf, Cacna1c, Cyp11b1, Cyp11b2,
Fkbp5, Hsd11b1, Igf2, Morc1, Nr3c1, Oxt, Oxtr, Pclo,
Slc6a4. Methylation of Fkbp5 significantly moderated
Nr3c1 influence on anxiety-like behavior in adulthood
(F1,8= 18.1987, p= 0.0027). The higher Fkbp5’s methy-
lation level, the longer the animals spent in the light
indicating a lower level of anxiety-like behavior. The
average methylation of Fkbp5 was significantly reduced in
both male and female Nr3c1 depleted animals (delta for

Fig. 3 Ingenuity pathway analysis. Selected canonical pathways for the comparison of methylation changes in males and females after Nr3c1 loss.
See also Table S11 and S12
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males=−0.254, females=−0.341, F3,8= 10.537, p=
0.012, see Table S10).

Discussion
Our study tests for the first time the hypothesis that

Nr3c1 plays a causal role in shaping the DNA methylation
profile of the fetus and that these changes in methylation
triggered by Nr3c1 deficiency at birth are associated with
phenotypic alterations. Nr3c1+/− animals of both sexes
showed a significant increase exclusively in anxiety-like
behavior which is consistent with data derived from sev-
eral different transgenic mouse models41,42. Two of the
five genes whose methylation state in placenta sig-
nificantly correlate with levels of anxiety-like behavior
only in adult males but not females: Tspo and Slc1a7 are
involved in central nervous system functions. Tspo poly-
morphism is linked to separation anxiety in depressive
patients43 and Slc1a7 inhibits glutamate receptor
activity44.
Nr3c1 deficiency dramatically enhances differences in

DNA methylation between the sexes. This provides a
possible mechanism for sex-dependent effects of prenatal
stress that were previously reported (e.g., 45–48). Although
we examined DNA methylation in the placenta, which
reflects prenatal experience, it should be noted that early
postnatal stress also leads to sex-specific effects later in
life and the role of Nr3c1 in these effects needs further
study (e.g., 49–54). In addition, it should be noted that
perinatal gonadal hormones are capable of inducing
changes in methylation patterns between the sexes in wild
type animals as well55,56.
Nugent et al.57 examined the highly sexually dimorphic

preoptic area of the rat hypothalamus. They report
reduced activity of DNA methyltransferase in this as well
as decreased DNA methylation and release of masculi-
nizing genes from epigenetic repression. Gonadal steroids
are physiologically released in the first days after birth.
However, the sex differences in the fetal part of placenta
of the present study were detected on day 18.5 post-
conception well before the influence of the postnatal
testosterone and its metabolite estradiol. Furthermore,
Nugent et al.57 describe an astonishingly small number of
differentially methylated genes between the sexes exactly
as reported in our study: there were only 6 sites differ-
entially methylated between males and females of our
wildtype control group vs 2433 sites between our Nr3c1-
heterozygous female and male animals. The fact that the
differences in methylation between the sexes were dra-
matically enhanced in the heterozygous animals indicates
a gene by sex effect on DNA methylation.
Furthermore, Nugent et al.57 found higher levels of

global CpG-methylation in females in the preoptic area of
the hypothalamus. This finding is different from our
observation of elevated CpG-methylation in the male

placenta of Nr3c1+/− animals. Since methylation is highly
tissue-specific, this might explain the observed differences
in global methylation between the two studies. However,
it is possible that Nr3c1 deficiency changed the DNA
methylation landscape independently of postnatal hor-
monal influence and switched the differences in global
methylation between the sexes.
In addition, we examined the effect of sex and Nr3c1

deficiency on selected candidate genes that are known to
be involved in responses to prenatal stress. The growth
promoting hormone Igf2 was significantly less methylated
in wild type females as compared to males. Mina et al.58

previously reported elevated Igf2 mRNA in fetal female as
compared to male placenta of distressed mothers.
Although we observed a sex effect on Igf2 DNA methy-
lation, there was no effect of Nr3c1 deficiency. However,
Hsd11b1, encoding a protein which converts cortisol to
the inactive metabolite cortisone is hypermethylated in
Nr3c1+/− males as compared to Nr3c1+/− females and to
wildtype males. Although Green et al.59 did not find a sex
difference in Hsd11b1 methylation in human placenta,
low methylation of Hsd11b1 was associated with the risk
of being born large for gestational age. Similarly, a sex*-
genotype interaction effect on DNA methylation was
found for Slc6a4 and Cacna1 which were previously
associated with stress-related disorders60.
Fkbp5, the proximal regulator of the glucocorticoid

receptor, was hypomethylated in placental tissue of our
Nr3c1+/− animals. This result is in line with findings of
St-Cyr et al.61 who report hypomethylation of Fkpb5 in
the amygdala of adult female offspring as well as increased
ACTH stress reactivity after exposure to the prenatal odor
of a predator. Fkbp5 polymorphisms enhance the risk of
developing stress-related disorders in adulthood after
early traumatic experiences62. This effect is allele-specific
and depends on epigenetic changes in the glucocorticoid
response elements of Fkbp563. Most interestingly, we also
found a significant moderation effect of Fkbp5’s CG-
methylation level on anxiety-like behavior in adulthood.
Hartmann et al.64 succeeded in reducing an anxious-like
phenotype caused by an overexpression of FKBP51 in the
basolateral amygdala by applying a highly selective
FKBP51 point mutation antagonist. A new specific
antagonist of FKBP5—SAFIT2—reduced anxiety-like
behavior even when administered peripherally. It would
be intriguing to test if SAFIT2 could also rescue the
anxious-like phenotype of our Nr3c1+/− animals.
Besides hormonal receptors and microRNAs, several

genes that are differentially methylated in both sexes in
the same CGs when Nr3c1 is deficient are also associated
with neuronal and mental disorders (6 out of 17 CGs).
Four of these genes were differentially methylated in the
opposite direction: Babam1 has been linked to schizo-
phrenia65, Cacnb1 to autism66 and depression67, Coro2b, a
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candidate gene for ciliopathies to intellectual disability68

and Gmppa to intellectual disability and autonomic dys-
function69. Two genes that are differentially methylated in
the same direction in males and females are Rusc1 whose
gene product serves as neuronal adaptor protein70 and
Paqr4 which was recently associated with the develop-
ment of epilepsy71.
The functional pathway analysis revealed that the top

upstream regulator of differentially methylated genes in
both sexes in response to Nr3c1 deficiency is the Can-
nabinoid receptor 1 (CNR1) gene which is expressed in
the central nervous system and is known to be associated
with exploratory drive, anxiety and stress response72.
Most interestingly, the endocannabinoid receptor is also
discussed as a possible target for anxiolytic drugs73.
To our knowledge, there is only one study that exam-

ined the correlation of gene expression in response to
prenatal stress in placenta with adult behavior: Mueller
and Bale31 found a maladaptive stress responsivity in
adulthood in males exposed to prenatal stress, which was
linked to a significantly increased gene expression of
PPARα, IGFBP-1, HIF3α, and GLUT4 in male placenta.
The authors propose a mechanism by which the expres-
sion of PPARα is increased by glucocorticoids74, which in
turn induces expression of IGFBP-175. Interestingly,
PPARγ and IGFBP-2 are differentially methylated in
frontal cortex as well as placenta of Nr3c1 deficient males
of our study.
PPARγ-agonists that are usually used for treating type-2

diabetes have been reported to exhibit antidepressant
effects as well76. IGFBP-2 has also been linked to diabetes
and depression in peripheral77 and central nervous tis-
sue78. This illustrates the potential overlap between psy-
chiatric disorders and metabolic dysfunctions as reported
before79.
Our data point to the potential utility of placental DNA

methylation markers for early diagnosis of prenatal stress
and for prediction of the emergence of behavioral dis-
orders later in life. Thus, further evaluation of placental
tissue in mice as well as humans, which is easily available
after delivery, as a possible source for the predictor of risk
for adult psychiatric disorders at birth seems very
promising.
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